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Abstract

Sensor-based activity recognition aims to predict users’ activ-
ities from multi-dimensional streams of various sensor read-
ings received from ubiquitous sensors. To use machine learn-
ing techniques for sensor-based activity recognition, previous
approaches focused on composing a feature vector to repre-
sent sensor-reading streams received within a period of var-
ious lengths. With the constructed feature vectors, e.g., us-
ing predefined orders of moments in statistics, and their cor-
responding labels of activities, standard classification algo-
rithms can be applied to train a predictive model, which will
be used to make predictions online. However, we argue that
in this way some important information, e.g., statistical infor-
mation captured by higher-order moments, may be discarded
when constructing features. Therefore, in this paper, we pro-
pose a new method, denoted by SMMAR, based on learn-
ing from distributions for sensor-based activity recognition.
Specifically, we consider sensor readings received within a
period as a sample, which can be represented by a feature
vector of infinite dimensions in a Reproducing Kernel Hilbert
Space (RKHS) using kernel embedding techniques. We then
train a classifier in the RKHS. To scale-up the proposed
method, we further offer an accelerated version by utilizing
an explicit feature map instead of using a kernel function. We
conduct experiments on four benchmark datasets to verify the
effectiveness and scalability of our proposed method.

Introduction
Recently, activity recognition has become one of the most
crucial techniques in many real-world applications, such as
healthcare, smart homes, security (Lara and Labrador 2013;
Bulling et al. 2014; Frank et al. 2010; Ravi et al. 2005).
The goal of activity recognition is to classify streams of
sensor readings received from different types of sensors
with the use of artificial intelligence (Bulling et al. 2014;
Mannini and Sabatini 2010). In general, approaches to activ-
ity recognition can be classified into two categories: sensor-
based and vision-based (cameras can also be considered as a
special type of sensors) (Chen et al. 2012). In this work, we
focus on wireless sensor-based activity recognition.

To build a recognition model from raw sensor readings to
high-level activities, it mainly consists of two steps. The first
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step is to segment continuous streaming sensor readings au-
tomatically or manually (Yin et al. 2005; Janidarmian et al.
2017). Each segment contains sensor readings received from
a set of sensors in a specific period of various lengths, and is
supposed to correspond to one activity category. After that,
the second step is to learn a predictive model to map each
segment to its corresponding activity label. This is referred
to as a multivariate time series classification problem. In this
work, we assume segments of the streaming sensor data is
prepared beforehand (yet the number of frames1 of each seg-
ment can be different), and focus on solving the time series
classification problem for activity recognition. In this con-
text, as each segment is multi-dimensional and of various
lengths, a key research issue is how to construct a feature
vector to represent each segment because conventional clas-
sification algorithms are vector based (Lockhart and Weiss
2014), i.e., an input, either training or test instance, to a clas-
sification algorithm needs to be a feature vector of fixed di-
mensionality.

A simple solution to address the aforementioned research
issue is to consider each individual frame of a segment as an
instance, i.e., a vector of readings received from a fixed set
of sensors at a particular time stamp, and assign each frame
a label as the activity category of the segment. In this way,
conventional classification algorithms can be performed in
the frame-level instead of the segment-level to train a clas-
sifier. For instance, suppose only one sensor is used, whose
frequency is set to be 1Hz, and a segment, whose activity
label is “walking upstairs”, lasts 5 seconds, which means
that 5 frames are recorded. Frame-level approaches assign
the activity label “walking upstairs” to each frame of the
segment, and consider each framework as an individual in-
stance. An alterative solution is to aggregate all the frames
within a segment to generate a single feature vector. For
example, an average vector of all the frames in a segment
can be used to represent the segment. Consider the “walk-
ing upstairs” example. One can use the average vector of
the 5 frames to represent the whole segment. In the past,
one of the most widely used feature extraction approaches
is to calculate statistical metrics, e.g., mean, variance, etc.,

1The term “frame” is often used in vision-based cases. In this
paper, a frame is a vector of sensor readings from multiple sensors
at a particular timestamp. A segment contains multiple frames.



from the raw sensor data of a segment (Plötz et al. 2011;
Lockhart and Weiss 2014).

However, both of the aforementioned solutions fail to re-
tain all the important information underlying a segment of
sensor readings while constructing a feature vector. In the
first solution, each frame is considered as an individual in-
stance, and cannot fully represent the whole activity. In the
second solution, one needs to predefine what statistical met-
rics, e.g., what orders of moments, are used, which is diffi-
cult to determine in practice. For example, if the mean vec-
tor is used to represent a segment corresponding to “walk-
ing upstairs”, then it may be similar to that of another activ-
ity like “walking downstairs”. Note that most classification
algorithms are distance or similarity based. If the feature
representation fails to distinguish instances from different
classes, it is difficult to learn a precise classifier. In this case,
more statistical moments, such as variance or even higher-
order moments, are required to construct features. However,
how to decide what orders of moments to construct features
that are able to effectively distinguish different activities is
challenging. Intuitively, if each segment can be represented
by infinite orders of moments, then the feature representa-
tion should be rich enough to distinguish instances between
different classes. In this work, we offer a solution based on
this motivation.

We first consider each segment as a data sample that fol-
lows an unknown probability distribution, and aim to ex-
tract features of each segment to capture sufficient statisti-
cal information. We then propose a novel method for time
series classification with an application to activity recog-
nition via kernel embedding. Specifically, with the kernel
embedding technique (Smola et al. 2007; Schölkopf and
Smola 2002), each segment or sample is mapped to an el-
ement in a Reproducing Kernel Hilbert Space (RKHS). A
RKHS is a high-dimensional or even infinite-dimensional
feature space, which is able to capture any order of mo-
ments of the probability distribution from which the sample
is drawn. Therefore, each element in the RKHS can be con-
sidered as a feature vector of sufficient statistics for repre-
senting the corresponding time-series segment. Finally, with
the new feature vectors in a RKHS, we cast the multivari-
ate time series classification problem as a Support Mea-
sure Machines (SMM) formulation (Muandet et al. 2012;
Muandet 2015), which is a new method proposed for learn-
ing problems on distributions.

However, similar to other kernel-based methods, our pro-
posed kernel-embedding-based approach for activity recog-
nition suffers from a scalability issue due to highly compu-
tational cost on calculation of a kernel matrix. There have
been several approaches proposed to alleviate the computa-
tional cost of kernel methods, such as low-rank approxima-
tion of the Gram matrix (Bach and Jordan 2005), explicit
finite-dimensional features for additive kernels (Maji et al.
2013), Nyström methods (Williams and Seeger 2000), and
Random Fourier Features (RFF) (Rahimi and Recht 2007;
Sriperumbudur and Szabó 2015). In this work, we adopt
RFF to propose an accelerated version to deal with large-
scale datasets.

The rest of this paper is organized as follows. We first re-

view related work on feature extraction for activity recogni-
tion, and some preliminaries of our proposed method. After
that we present our proposed method in detail, and report
extensive experimental results on four benchmark datasets.
Finally we conclude this work and point out some potential
directions in the future.

Related Work and Preliminary
As mentioned in the previous section, feature extraction
from each sensor readings segment of variate-length to gen-
erate a representative feature vector of fixed-length is crucial
for sensor-based activity recognition. There are two types
of feature extraction approaches in general: statistical and
structural (Lara and Labrador 2013). Statistical approaches
concatenate (hand-picked) statistical metrics, e.g., moments,
to construct feature vectors. Structural approaches take into
account the interrelationship among data. The ECDF ap-
proach (Hammerla et al. 2013; Plötz et al. 2011) leverages
distributions’ quantile function to preserve the overall shape
of the distribution as well as the spatial positions; Lin et
al. (2007) proposed SAX method to discrete data into sym-
bolic strings to represent equal probability mass. Our pro-
posed method is a unified framework that naturally embeds
feature extraction and classification. The feature extraction
component of our method extracts all orders of moments to
form a concatenated feature vector in the RKHS, thus falls
into the statistical category.

Kernel Embedding of Distributions
Given a sample X = {xi}ni=1 drawn from a probability dis-
tribution P, where each instance xi is of d dimensions. The
technique of kernel embedding (Smola et al. 2007) for repre-
senting an arbitrary distribution is to introduce a mean map
operation µ(·) to map instances to a RKHS, H, and to com-
pute their mean in the RKHS as follows,

µP := µ(P) = Ex∼P[φ(x)] = Ex∼P[k(x, ·)], (1)

where φ : Rd → H is a feature map, and k(·, ·) is the kernel
function induced by φ(·). If the condition Ex∼P(k(x,x)) <
∞ is satisfied, then µP is also an element in H. It has been
proven that if the kernel k(·, ·) is characteristic, then the
mapping µ : P → H is injective (Sriperumbudur et al.
2009). The injectivity indicates an arbitrary probability dis-
tribution P is uniquely represented by an element in a RKHS
through the mean map. As each distribution can be mapped
toH, the operations defined inH, such as inner product and
distance measure, are capable of estimating similarity or dis-
tance between distributions.

In practice, an underlying probability distribution of a
sample is unknown. One can use an unbiased empirical esti-
mation to approximate the mean map as follows,

µ̂P =
1

n

n∑
i=1

φ(xi) =
1

n

n∑
i=1

k(xi, ·). (2)

Though in theory, the dimension of µ̂P is potentially infinite,
by using the kernel trick, the inner product of two probability



distributions in a RKHS can be computed efficiently through
a kernel function associated to the RKHS,

〈µ̂Px
, µ̂Pz

〉 = k̃(µ̂Px
, µ̂Pz

) =
1

nxnz

nx∑
i=1

nz∑
j=1

k(xi, zj), (3)

where k̃(·, ·) is a linear kernel defined in the RKHS, nx and
nz are the sizes of the samples X and Z drawn from Px and
Pz , respectively. In general, k̃(·, ·) can be a nonlinear kernel
defined as follows,

k̃(µ̂Px
, µ̂Pz

) = 〈ψ(µ̂Px
), ψ(µ̂Pz

)〉, (4)

where ψ(·) is the associated feature mapping of the nonlin-
ear kernel k̃(·, ·).

Random Fourier Features
Though the kernel trick helps to avoid computation on in-
ner product between high-dimensional (or even infinite-
dimensional) vectors, the resultant kernel matrix is still of
expensively computational cost, especially when training
data is large-scale. Random Fourier Features (Rahimi and
Recht 2007) provide explicit relatively low-dimensional fea-
ture maps for shift-invariant kernels k(x,x′) = k(x − x′)
based on the following theorem:

Theorem 1 (Bochner’s Theorem (Rudin 2017)). A con-
tinuous, shift-invariant kernel k is positive definite if and
only if there is a finite non-negative measure P(ω) on
Rd, such that k(x − x′) =

∫
Rd e

iω>(x−x′)dP(ω) =∫
Rd×[0,2π] 2cos(ω

>x + b)cos(ω>x′ + b)d(P(ω)× P(b)) =∫
Rd 2(cos(ω

>x)cos(ω>x′) + sin(ω>x)sin(ω>x′))dP(ω),
where P(b) is a uniform distribution on [0, 2π].

The randomized feature map z : Rd → RD linearizes the
kernel:

k(x,x′) = 〈φ(x), φ(x′)〉 ≈ z(x)>z(x′), (5)

where the inner product of explicit feature maps can uni-
formly approximate the kernel values without the kernel
trick. The random Fourier features are generated by:

zw(x) =
√
2cos(w>x + b) (6)

where w ∼ p(w), which is k(·, ·)’s Fourier transform distri-
bution on RD, and b is sampled uniformly from [0, 2π]. Then
k(x,x′) = E(zw(x)>zw(x′)) for all x and x′. Such a rel-
atively low-dimensional feature map enables the kernel ma-
chine to be efficiently solved by fast linear solvers, therefore
enables kernel methods to handle large-scale datasets (Sripe-
rumbudur and Szabó 2015).

The Proposed Methodology
Problem Statement
In our problem setting, we assume that segments have been
prepared on streams of sensor readings in advance. Sup-
pose given n segments, {Xi}ni=1, for training, where Xi =
[xi1 ... xini

] ∈ Rd×ni . Here, each column xij ∈ Rd×1 is
a vector of signals received from d sensors at a time stamp,

which is referred to as a frame in the segment, and ni is the
length of the i-th segment. Note that for different segment,
the values of ni can be different. Moreover, for training,
each segment Xi is associated with a label yi ∈ Y , where
Y = {1, ..., L} is a set of predefined activity categories. Our
goal is to train a classifier f to map {Xi}’s to {yi}’s. For
testing, given m segments {X∗i }mi=1 without corresponding
labels, we use the trained classifier to make predictions.

Motivation and High-Level Idea

For most standard classification methods, the input is a fea-
ture vector of fixed dimensionality, and the output is a label.
However, in our problem setting, the input Xi is a matrix.
Moreover, for different segments i and j, the sizes of the
matrices Xi and Xj can be different (have the same number
of rows, but different number of columns). Therefore, stan-
dard classification methods cannot be directly applied. As
discussed, a commonly used solution is to decompose the
matrix Xi to ni vectors or frames {xij}’s, each of which is
of d dimensions, and assign the same label yi to each vector.
In this way, for each segment, one can construct ni input-
output pairs {(xi, yi)}ni

i=1. By combining such input-output
pairs from all the segments, one can apply standard classi-
fication methods to train a classifier f . For testing, given a
segment X∗k, we can first use the classifier to predict the la-
bels of each feature vector x∗kj in the segment, and use the
majority class of f(x∗kj)’s as the predicted label for X∗k. A
major drawback of this approach is that a single frame of a
segment fails to represent an entire activity that lasts for a
period of time.

Another approach is to aggregate the ni frames of a seg-
ment Xi to generate a feature vector of fixed dimensional-
ity to represent the segment. For example, one can use the
mean vector x̄i =

∑ni

j=1 xij ∈ Rd×1 to represent a segment
Xi. This approach can capture some global information of
a segment, but in practice, one needs to manually generate
a very high-dimensional vector to fully capture useful in-
formation of each segment. For example, one may need to
generate a set of vectors of different orders of moments for
a segment, and then concatenate them to construct a unified
feature vector to capture rich statistic information of the seg-
ment, which is computationally expensive.

Different from previous approaches, we consider each
segment Xi as a sample of ni instances drawn from an un-
known probability Pi, and all {Pi}ni=1 ⊆ P , where P is
the space of probability distributions. By borrowing the idea
from kernel embedding of distributions, we can map all sam-
ples to a RKHS through a characteristic kernel, and then use
a potentially infinite-dimensional feature vector to represent
each sample, and thus each segment. As the kernel embed-
ding with characteristic kernel is able to capture any order
of moments of the sample, the feature vector is supposed to
capture all statistical moments information of the segment.
With the new feature representations for each segment in the
RKHS, we can train a classifier with their corresponding la-
bels in the RKHS for activity recognition.



Activity Recognition via SMMAR

In this section, we present our method for activity recogni-
tion in detail. First, each segment or sample Xi is mapped
to a RKHS with a kernel k(xi,xj) = 〈φ(xi), φ(xj)〉 via an
implicit feature map φ(·), and represented by an element µi
in the RKHS via the mean map operation:

µi =
1

ni

ni∑
p=1

φ(xip). (7)

As a result, we have n pairs of input-output in the RKHS
{(µ1, y1), ..., (µn, yn)}. Then our goal is to learn a classifier
f : H → H̃ such that f(µi) = yi for i = 1, ..., n. Here
H̃ = H if a linear kernel on {µi}’s is used, i.e., k̃(µi,µj) =
〈µi,µj〉. Otherwise, H̃ is another RKHS if nonlinear kernel
is used on {µi}’s, i.e., k̃(µi,µj) = 〈ψ(µi), ψ(µj)〉, where
ψ(·) is a nonlinear feature map that induces the kernel k̃(·, ·).

By using the empirical risk minimization frame-
work (Vapnik 1998), we aim to learn f(·) by solving the
following optimization problem,

min
f

1

n

n∑
i=1

`(f(µi), yi) + λ‖f‖H̃, (8)

where `(·) is a data-dependent loss function, λ > 0 is the
tradeoff parameter to control the impact of the regulariza-
tion term ‖f‖H̃ and the complexity of the solution, and H̃ is
a RKHS associated with the kernel k̃(·, ·). As proven in the
representer theorem in (Muandet et al. 2012) that the func-
tional f(·) can be represented by

f =

n∑
i=1

αiψ(µi), (9)

where αi ∈ R. If a linear kernel is used for k̃(·, ·) on P , then
H̃ = H, and (9) can be reduced as

f =

n∑
i=1

αiµi, where αi ∈ R. (10)

By specifying (9) or (10) using the Support Vector Ma-
chines (SVMs) formulation2, we reach the following opti-
mization problem, which is known as Support Measure Ma-
chines (SMMs) (Muandet et al. 2012),

min
f

1

2
‖f‖2H̃ + C

n∑
i=1

ξi, (11)

s.t. yif(µi) ≥ 1− ξi,
ξi ≥ 0,

1 ≤ i ≤ n,

where H̃ is a RKHS associated with the kernel k̃(·, ·) on
P , {ξi}ni=1 are slack variables to absorb tolerable errors,
and C > 0 is a tradeoff parameter. When the form of the

2Note that one can also specify (9) or (10) using other loss func-
tions, which result in different particular approaches.

kernels, k(·, ·) and k̃(·, ·), are specified3, many optimization
techniques developed for standard linear or nonlinear SVMs
can be applied to solve the optimization problem of SMMs.

After the classifier f(·) is learned, given a test segment
X∗k, one can first represent it using the mean map operation

µ∗k =
1

nk

nk∑
p=1

φ(x∗kp),

and then use f(·) to make a prediction f(µ∗k). In the sequel,
we denote this kernel-embedding-based method for activity
recognition by SMMAR.

R-SMMAR for Large-Scale Activity Recognition
Note that the technique of kernel embedding of distributions
used in SMMAR makes a feature vector of each segment
be able to capture sufficient statistics of the segment. This
is very useful for calculating similarity or distance metric
between segments. However, it needs to compute two ker-
nels, one is for kernel embedding of the frames within each
segment, and the other is for estimating similarity between
segments. This makes SMMAR computationally expensive
when the number of segments is large and/or the number of
frames within each segment is large. To scale up SMMAR,
in this section, we present an accelerated version using Ran-
dom Fourier Features to construct an explicit feature map
instead of using the kernel trick.

To be specific, based on (7) and (5), the empirical kernel
mean map on a segment Xi with explicit Random Fourier
Features can be written by

µi =
1

ni

ni∑
p=1

z(xip).

where µi ∈ RD. We aim to learn a classifier f(·) in terms of
parameters w. If f(·) is linear with respect to {µi}’s, then
the form of f(·) can be parameterized as

f(µi) = w>µi. (12)

If f(·) is a nonlinear classifier, then it can be written as

f(µi) = w>z̃(µi), (13)

where z̃ : RD → RD̃ is another mapping of Random Fourier
Features. (12) is a special case of (13) when z̃ is an iden-
tity mapping. The resultant optimization problem is refor-
mulated accordingly as follows,

min
w∈RD̃

1

n

n∑
i=1

`(w>z̃(µi), yi) + λ‖w‖22. (14)

As z̃(·) is an explicit feature map, standard linear SVMs
solvers can be applied to solve (14), which is much more
efficient than solving (11). Accordingly, in the sequel, we
denote this accelerated version of SMMAR with Random
Fourier Features by R-SMMAR.

3Recall that the kernel k(·, ·) is defined on {Xi}’s to perform a
mean map operation for generating {µi}’s, and the kernel k̃(·, ·) is
defined on {µi}’s for final classification.



Experiments
In this section, we conduct comprehensive experiments on
four real-world activity recognition datasets to evaluate the
effectiveness and scalability of our proposed SMMAR and
its accelerated version R-SMMAR.

Datasets
Four benchmark datasets are used in our experiments. The
overall statistics of the datasets are listed in Table 1.

Datasets # Seg. # En. # Fea. # C. f # Sub.
Skoda 1,447 68.8 60 10 14 1
WISDM 389 705.8 6 6 20 36
HCI 264 602.6 48 5 96 1
PS 1,614 4.0 9 6 50 4

Table 1: Statistics of the four datasets. Note that in the table,
“Seg.” denotes segments, “En.” denotes average number of
frames per segment, “Fea.” denotes feature dimensions, “C.”
denotes classes, “f” denotes frequency in Hz (sampling rates
of sensors may be various, but we assume the frequency of
all sensors in a dataset is the same after preprocessing), and
“Sub.” denotes subjects.

Skoda (Stiefmeier et al. 2007) contains 10 gestures per-
formed during car maintenance scenarios. 20 sensors are
placed on the left and right arms of the subject. The fea-
tures are accelerations of 3 spatial directions of each sensor.
Each gesture is repeated about 70 times.

WISDM is collected using accelerometers built into
phones (Kwapisz et al. 2010). A phone was put in each sub-
ject’s front pants leg pockets. Six regular activities were per-
formed, i.e., walking, jogging, ascending stairs, descending
stairs, sitting and standing.

HCI focuses on variations caused by displacement of sen-
sors (Förster et al. 2009). The gestures are arm movements
with the hand describing different shapes, e.g., a pointing-up
triangle, an upside-down triangle, and a circle. Eight sensors
are attached to the right lower arm of each subject. Each ges-
ture is recorded for over 50 repetitions, and each repetition
for 5 to 8 seconds.

PS is collected by four smartphones on four body posi-
tions: (Shoaib et al. 2013). The smartphones are embedded
with accelerometers, magnetometers and gyroscopes. Four
participants were asked to conduct six activities for sev-
eral minutes: walking, running, sitting, standing, walking
upstairs and downstairs.

Evaluation Metric
We adopt the F1 score as our evaluation metric. As the ac-
tivity recognition datasets are imbalanced and of multiple
classes, we adopt both micro-F1 score (miF) and weighted
macro-F1 score (maF) to evaluation the performance of dif-
ferent methods. Note that the Null class is included during
training and testing, and is always considered as a “negative”
class when computing miF and maF. More specifically, miF

is defined as follows,

miF =
2× precisionall × recallall

precisionall + recallall
,

where precisionall and recallall are computed from the
pooled contingency table of all the positive classes as fol-
lows,

precisionall =

∑
i TPi∑

i TPi +
∑
i FPi

,

recallall =

∑
i TPi∑

i TPi +
∑
i FNi

,

where i denotes the i-th class of a set of predefined activity
categories (i.e., positive classes), and TPi, FPi, and FNi de-
note true positive, false positive, and false negative with re-
spect to i-th positive class, respectively. Different from miF,
maF is defined as follows,

maF =
∑
i

wi
2× precisioni × recalli

precisioni + recalli
,

where wi is the proportion of the i-th positive class.

Experimental Setup
In our experiments, each dataset is randomly split into train-
ing and testing sets using a ratio of 70% : 30%. Miss-
ing values are replaced by the mean values of the certain
class in the training data. PCA is conducted as preprocess-
ing with 90% variance kept. All the results are reported
by taking average values together with the standard devi-
ation over 6 repeated experiments. We use SVMs as the
base classifier, and LIBSVM (Chang and Lin 2011) for
implementation. For overall comparisons between our pro-
posed methods and baseline methods, we use the RBF kernel
k(x, x′) = exp(−γ‖x−x′‖2). Note that in SMMAR, we use
RBF kernels for both kernel embedding within each segment
and classifier learning over different segments. We will fur-
ther investigate different choices of kernels in SMMAR. We
tune the kernel parameter γ as well as the tradeoff parameter
C in LibSVM, and choose optimal parameter settings based
on 5-fold cross-validation on the training set. We compare
SMMAR with the following baseline methods.

Segment-based methods This type of methods aim to
aggregate sensor-reading segments of variable-lengths into
feature vectors of a fixed-length. In order to compare feature
extraction methods, to minimize the impact of classifiers,
SVM is chosen as the unique classifier for different feature
extraction methods.

• Moment-x. All the frames in a segment is aggregated by
extracting different orders of moments to concatenate a
single feature vector to be fed to SVMs. We use Moment-
x to denote up to x orders of moments (inclusive) are ex-
tracted to generate a feature vector.

• ECDF-d. ECDF-d extracts d descriptors per sensor per
axis. The range is set to d ∈ {5, 15, 30, 45} following the
settings in (Hammerla et al. 2013).



Skoda WISDM HCI PS
Methods miF maF miF maF miF maF miF maF
SMMAR 99.61±.24 99.60±.25 55.87±2.66 56.09±3.03 100±0 100±0 96.74±1.20 96.72±1.22
Moment-1 92.46±1.97 92.39±2.01 38.30±4.10 44.63±12.22 91.35±2.28 91.32±2.33 93.90±.94 93.85±.93
Moment-2 92.27±1.47 92.14±1.49 52.55±1.46 57.21±7.22 96.47±.79 96.47±.77 95.95±.86 95.94±.86
Moment-5 94.49±1.66 94.45±1.70 57.31±5.91 62.52±9.81 97.76±.79 97.77±.78 93.31±.99 93.42±.93
Moment-10 95.24±.63 95.23±.64 57.79±3.97 62.44±8.02 98.72±.79 98.72±.79 91.93±1.44 92.00±1.36
ECDF-5 92.96±1.57 92.95±1.52 52.77±2.73 56.22±7.33 100±0 100±0 95.63±1.07 95.63±1.06
ECDF-15 93.62±1.34 93.60±1.36 54.01±3.09 57.47±7.65 100±0 100±0 93.97±.96 94.04±.97
ECDF-30 93.25±1.11 93.21±1.15 55.33±4.50 58.26±7.13 100±0 100±0 90.82±.53 91.05±.57
ECDF-45 92.20±1.07 92.20±1.13 53.46±2.84 57.77±7.02 100±0 100±0 87.15±1.32 87.23±1.59
SAX-3 94.54±1.28 94.48±1.21 32.90±1.47 23.62±1.81 21.15±0 7.39±0 50.28±2.40 41.30±3.89
SAX-6 96.13±1.57 96.10±1.55 35.49±3.11 28.77±2.82 21.15±0 7.39±0 52.95±2.54 46.86±.68
SAX-9 97.36±1.33 97.31±1.34 32.43±1.16 23.84±1.61 21.15±0 7.39±0 51.70±1.14 43.58±1.52
SAX-10 96.22±.84 96.18±.83 32.57±1.48 26.89±2.39 21.15±0 7.39±0 52.81±1.08 44.60±1.52
miFV 61.40±3.24 53.63±2.50 14.61±2.04 4.72±2.13 21.64±1.58 18.78±2.24 15.32±4.28 7.65±5.83
SVM-f 93.46±1.20 92.65±1.38 27.49±2.71 18.70±2.88 99.52±.53 99.52±.53 95.22±1.10 95.21±1.10
kNN-f 93.17±1.44 92.93±1.45 28.48±2.15 17.96±2.84 99.04±1.22 99.05±1.21 94.73±.65 94.72±.65

Table 2: Overall comparison results on the four datasets (unit: %). The perfect prediction on HCI lies in the fact that the large #
En. from Table. 1. It means much more accurate record of each activity. WISDM has the same advantage, but the problem lies
in the large # Sub., which greatly enlarges variance of each class, thus affects the prediction.

• SAX-a. Following the settings in (Lin et al. 2007), we set
N to be the number of frames of the segment, n to be
the dimension of features (thus no dimension reduction),
alphabet size a ∈ {3, ..., 10}.

• miFV. miFV (Wei et al. 2017) is a state-of-the-art multi-
instance learning method. It treats each segment of frames
as a bag of instances, and adopts Fisher kernel to trans-
form each bag into a vector. We follow the parameter tun-
ing procedure in (Wei et al. 2017) with PCA energy set to
1.0 and the number of centers from 1 to 10.

Frame-based methods This type of methods consider
each frame as an individual instance, whose class label is
as the same as the corresponding segment’s.
• SVM-f apply a SVM on frame-level data.
• KNN-f apply a kNN classifier on frame-level data, where

the value of k is tuned in the range of {1, ..., 10}.

Overall Experimental Results
The overall comparison results of proposed methods along
with all the baseline methods are presented in Table 2. As
can be seen from the table, on average, the performance of
SMMAR/Moment-x/ECDF-d methods are much more sta-
ble than that of other methods. For example, SAX-a meth-
ods perform very well on Skoda, but perform very poor on
all the other datasets. And our proposed SMMAR performs
best on three out of four datasets. This illustrates the effec-
tiveness of using kernel embedding technique to generate
feature vectors in a RKHS for capturing any order of mo-
ments of a segment. Moreover, we can also observe from
the table that in general, SVMs trained on feature vectors
that contain more moment information perform better. For
instance, on average, Moment-10 > Moment-5 > Moment-
2 > Moment-1 on the datasets Skoda, WISDM, and HCI.
One might notice that miFV performs very poor on all the
four datasets. The reason is that it’s not robust enough with
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Figure 1: Comparison results of Moment-x in terms of miF
on HCI by varying moments and frequencies.

respect to imbalanced class and the Null class interruption
in the activity data. If the activity data is arranged into a
balanced manner, the performances of miFV improve about
10%. If the Null class is removed, the performances improve
about 30%.

Impact on Orders of Moments
To further investigate impact of different orders of moments
to be used for constructing feature vectors on activity recog-
nition, we conduct experiments on HCI as shown in Fig. 1.
In the figure, different curve denotes different sampling fre-
quency on sensor readings, which results in different num-
bers of frames per segment on average. The x-axis indicates
up to what orders of moments are used. Though the recog-
nition results are more or less effected by using different
sampling frequencies on sensor readings, their increasing
trends with more orders of moments are the same. These
favourably prove our idea that incorporating more moment
information in the feature vectors benefits the activity recog-
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Figure 2: The miF performance on Skoda under differ-
ent sampling frequencies and different average numbers of
frames for each segment. The x-axis on the top and the x-
axis are relevant as a lower sampling frequency on sensor
readings leads to a smaller number of frames per segment.

nition performance. Hence the proposed method is likely to
perform the best since all orders of moments information is
utilized in the proposed method.

Impact of Sampling Frequency on Sensor Readings
Maurer et al. (2006) found that when increasing the sam-
pling frequency, there is no significant gain in accuracy
above 20Hz for activities. Here, we conduct experiments
to analyze the impact of sampling frequency on the clas-
sification performance of SMMAR. Fig. 2 shows the miF
performance of SMMAR on Skoda under different sampling
rates varying from 0.5Hz to 14Hz, resulting in average num-
bers of frames per segment varying from 3 to 68. The clas-
sification performance increases with larger average num-
ber of frames per segment, then becomes stable between 10
to 70 frames/segment. Therefore, our suggestion is that to
use SMMAR for activity recognition, each segment needs to
contain 10 or more frames, which is reasonable in practice.

Impact on Different Choices of Kernels
In SMMAR, there are two types of kernels: k(·, ·) for ker-
nel embedding within each segment (3) and k̃(·, ·) for train-
ing a nonlinear classifier (4). In this section, we conduct
experiments to investigate the impact of different combina-
tions of kernels on the final classification performance of
SMMAR. The results are shown in Table 3, where linear
kernel (LIN), polynomial kernel of degree 3 (POLY3), RBF
kernel and sigmoid kernel (SIG) are used. When SMMAR

uses the RBF kernel for both k(·, ·) and k̃(·, ·), it performs
best. Moreover, when the sigmoid kernel is used for kernel
embedding, SMMAR performs worst. This may be because
sigmoid kernel is not positive semi-definite, thus not charac-
teristic, which may not be able to capture sufficient statistics
for each segment (or sample).

Experimental Results on R-SMMAR

In our final series of experiments, we test the scalability
and effectiveness of our proposed accelerated version R-

k̃(·, ·)
LIN POLY3 RBF SIG

k
(·,
·)

LIN 91.4300 91.3852 91.3632 28.6446
POLY3 98.1202 98.0728 98.1556 92.0938
RBF 98.1422 90.8818 98.8950 98.3728
SIG 87.7026 87.0830 90.4140 90.4176

Table 3: Comparison performance in terms of miF of
SMMAR on Skoda with different combinations of kernels.
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Figure 3: Comparison results between SMMAR and R-
SMMAR in terms of runtime and miF score on Skoda.

SMMAR. Figure 3 illustrates the trends of performance and
runtime with increasing sizes of random feature dimen-
sion D, respectively. The experiments are conducted on a
Linux computer with Intel(R) Core(TM) i7-4790S 3.20GHz
CPU. The runtime in seconds shown in the figure is the
total runtime in both training and testing. As can be seen
that with the increase of D, the runtime of R-SMMAR in-
creases accordingly, and performance in terms of miF be-
comes higher. Note that the best performance of SMMAR

in terms of miF on Skoda is 99.61%, with runtime of 264
seconds. R-SMMAR is able to achieve a comparable miF
score with small standard deviation when 10 ≤ D ≤ 40,
while requires much less runtime. Therefore, compared with
SMMAR, R-SMMAR is an efficient and effective approxi-
mation approach, which is suitable for large-scale datasets.
It saves a large proportion of runtime, and at the mean time,
achieves comparable performance.

Conclusion and Future Work
In this paper, we propose a novel solution, named SMMAR,
to extract all statistical moments of the activity data. This
is the very first work to apply the idea of kernel embed-
ding in the context of activity recognition problems. We
conduct extensive experiments and demonstrate the effec-
tiveness of SMMAR compared with a number of baseline
methods. Moreover, we also present an accelerated version
R-SMMAR to solve large-scale problems. In the future, be-
sides statistical information, we plan to extend the proposed
method to capture temporal information of each segment for
learning feature representation of each segment.
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